Transkritische CO2-Anwendungen

Der transkritische Prozess ist u.a. dadurch charakterisiert, dass die Wärmeabfuhr auf der Hochdruckseite isobar, aber nicht isotherm verläuft. Im Gegensatz zum Verflüssigungsvorgang bei subkritischem Betrieb erfolgt hierbei eine Gaskühlung (Enthitzung) mit entsprechendem Temperaturgleit. Der Wärmeübertrager wird deshalb als Gaskühler bezeichnet. Solange der Betrieb oberhalb des kritischen Drucks (74 bar) erfolgt, wird nur Dampf hoher Dichte gefördert. Eine Verflüssigung stellt sich erst nach Expansion auf ein niedrigeres Druckniveau ein – z.B. durch Zwischenentspannung in einen Mitteldrucksammler. Je nach Temperaturverlauf der Wärmesenke kann ein für transkritischen Betrieb ausgelegtes System auch subkritisch und unter diesen Bedingungen mit verbessertem Wirkungsgrad betrieben werden. In diesem Fall wird der Gaskühler zum Verflüssiger.

Eine weitere Besonderheit des transkritischen Betriebs ist die notwendige Regelung des Hochdrucks auf ein definiertes Niveau. Dieser „optimale Druck‟ wird in Abhängigkeit von der Austrittstemperatur des Gaskühlers durch Bilanzierung zwischen größt möglicher Enthalpiedifferenz bei gleichzeitig minimaler Verdichtungsarbeit ermittelt. Er muss durch eine intelligente Steuerung modulierend an die jeweiligen Betriebsbedingungen angepasst werden (Systembeispiel).

Beispiel für transkritisches CO2-Booster-System
Beispiel für transkritisches CO2-Booster-System

Wie zuvor beschrieben, erscheint die transkritische Betriebsweise bei rein thermodynamischer Betrachtung hinsichtlich Energie-Effizienz eher ungünstig. Dies trifft auch tatsächlich auf Systeme mit einem relativ hohen Temperaturniveau der Wärmesenke auf der Hochdruckseite zu. Allerdings können dabei zur Effizienzverbesserung zusätzliche Maßnahmen getroffen werden wie z. B. der Einsatz von Parallelverdichtung (Economiser-System) und/oder Injektoren sowie Expander zur Rückgewinnung der Drosselverluste bei der Expansion des Kältemittels.

Abgesehen davon gibt es Einsatzgebiete, bei denen der transkritische Prozess energetisch generell vorteilhaft ist. Dazu gehören z.B. Wärmepumpen für Brauchwasser-Erwärmung oder Trocknungsprozesse. Bei den üblicherweise sehr hohen Temperaturgradienten zwischen Druckgaseintritt in den Gaskühler und Eintrittstemperatur der Wärmesenke kann eine sehr niedrige Gasaustrittstemperatur erreicht werden. Begünstigt wird dies durch den Verlauf des Temperaturgleit und die relativ hohe mittlere Temperaturdifferenz zwischen CO2-Dampf und Wärmeträger-Fluid. Die niedrige Gasaustrittstemperatur führt zu einer besonders hohen Enthalpiedifferenz und damit zu einer hohen System-Leistungszahl.

Brauchwasser-Wärmepumpen kleinerer Leistung werden bereits in hohen Stückzahlen produziert und eingesetzt. Anlagen für mittlere bis größere Leistungen (z.B. Hotels, Schwimmbäder, Trocknungssysteme) müssen individuell geplant und ausgeführt werden. Deren Anzahl ist deshalb noch begrenzt, jedoch bei gutem Aufwärtstrend. Neben diesen spezifischen Anwendungen gibt es auch eine Reihe von Entwicklungen für die klassischen Bereiche der Kälte- und Klimatechnik. Hierzu gehören z.B. Supermarkt-Kälteanlagen. Inzwischen werden Anlagen mit Verdichtern im Parallelverbund bereits in größerem Umfang eingesetzt. Es handelt sich dabei überwiegend um sog. Booster-Systeme, bei denen der Normal- und Tiefkühlkreislauf direkt (ohne Wärmeübertrager) miteinander verbunden ist. Die Betriebserfahrungen und dort ermittelten Energiekosten zeigen vielversprechende Ergebnisse. Allerdings liegen die Investitionskosten noch über klassischen Anlagen mit HFKWs und Direktverdampfung.

Gründe für die günstigen Energiekosten liegen einerseits an den bereits weitgehend optimierten Komponenten und der Systemsteuerung sowie den zuvor beschriebenen Vorteilen hinsichtlich Wärmeübertragung und Druckabfall. Andererseits werden diese Anlagen bevorzugt in Klimazonen eingesetzt, die auf Grund des jahreszeitlichen Temperaturprofils sehr hohe Laufzeiten bei subkritischer Betriebsweise erlauben.

Zur weiteren Steigerung der Effizienz von CO2-Supermarktsystemen und bei deren Einsatz in wärmeren Klimazonen kommen auch zunehmend die zuvor beschriebenen Technologien mit Parallelverdichtung und/oder Injektoren zur Anwendung.

Insofern, aber auch mit Blick auf die sehr anspruchsvolle Technik und die hohen Anforderungen an die Qualifikation von Planern und Service-Fachleuten, kann die CO2-Technologie nicht pauschal als Ersatz für Anlagen mit HFKW-Kältemitteln angesehen werden.